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   Abstract 

 Among the major physiological functions of steroid hor-
mones is regulation of carbohydrate, fat, and protein metab-
olism. Mitochondria, through oxidative phosphorylation, 
play a critical role in modulating a host of complex cellular 
metabolic pathways to produce chemical energy to meet the 
metabolic demand for cellular function. Thus, androgens 
may regulate cellular metabolism and energy production 
by increased mitochondrial numbers, activation of respi-
ratory chain components, and increased transcription of 
mitochondrial-encoded respiratory chain genes that code 
for enzymes responsible for oxidative phosphorylation. 
Androgen defi ciency is associated with increased insulin 
resistance, type 2 diabetes (T2DM), metabolic syndrome, 
obesity, and increased overall mortality. One common link 
among all these pathologies is mitochondrial dysfunction. 
Contemporary evidence exists suggesting that testosterone 
defi ciency (TD) contributes to mitochondrial dysfunction, 
including structural alterations and reduced expression 
and activities of metabolic enzymes. Here, we postulate 
that TD contributes to symptoms of fatigue, insulin resis-
tance, T2DM, cardiovascular risk, and metabolic syndrome 
through a common mechanism involving impairment of 
mitochondrial function.  

   Keywords:    cardiovascular risk;   insulin resistance;   mitochon-
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  Introduction 

  Testosterone defi ciency and insulin resistance, type 2 

diabetes, and vascular disease 

 Testosterone defi ciency (TD) in men is associated with an 
increased risk of all-cause mortality independent of other 
risk factors  [1 – 5] . Further, serum testosterone (T) levels are 
inversely related to mortality due to cardiovascular disease 
(CVD) and plasma T levels may represent a predictive bio-
chemical marker. Interestingly, even after adjusting for several 
confounding clinical variables, signifi cant evidence exists for 
an inverse relationship between serum T levels and mortality 
 [5, 6] . Cardiomyocytes contain a large number of mitochon-
dria providing the cell an aerobic respiration pathway through 
oxidative phosphorylation to generate approximately 60 %  of 
its energy from fatty acids and triglyceride metabolism and 
 ∼ 35 %  from carbohydrate metabolism and  ∼ 5 %  resulting 
from amino acid metabolism. T exerts benefi cial effects on 
cardiac ischemia, angina, and chronic or congestive heart fail-
ure (CHF)  [7 – 9] . Further, CHF is characterized by increased 
catabolic rate and reduced anabolic activity  [10 – 12] , and 
treatment with T improved oxygen consumption (VO 2 ) and 
physical activity in patients with CHF  [9] . A number of 
studies have shown that T supplementation in men with TD 
reduced waist circumference, total cholesterol, and reduced 
circulatory pro-infl ammatory cytokines  [13, 14] . Men with 
low circulating T levels may exhibit impaired mitochondrial 
oxidative phosphorylation  [7] . A recent review by Saad  [15]  
summarized the data from several studies on T supplemen-
tation and improvement in body composition, and noted a 
marked increase in fat-free mass and a signifi cant reduction 
in fat mass. Jockenh ö vel et al.  [16, 17]  reported that men with 
TD receiving T therapy consistently report reduced fatigue. 
This treatment is associated with concomitant stimulation of 
erythropoiesis and improvement in hematocrit levels  [18] . 

 A number of prospective studies have shown that low T is 
a precursor of the later development of type 2 diabetes mel-
litus (T2DM)  [19 – 25] . Patients with prostate cancer (PCa) 
who were treated with androgen deprivation therapy (ADT) 
developed glucose intolerance within a 6-month period 
after ADT with concomitant elevated fasting insulin levels 
within 3 months after induction of TD  [26, 27] . Furthermore, 
patients treated with ADT are at higher risk of myocardial 
infarction within the fi rst 3 – 6 months of treatment  [28, 29] . 
As discussed in Part 1 of this two-part series, ADT is associ-
ated with profound fatigue developing within 1 week of sur-
gical or chemical castration; however, this side effect is not 
reported consistently within the scientifi c literature, and it is 
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viewed as a  “ quality of life issue. ”  Thus, due to its subjec-
tive nature, no attempts have been made to objectively assess 
fatigue  [30, 31]  (see also Induced Testosterone Defi ciency: 
From Clinical Presentation of Fatigue, Erectile Dysfunction 
and Muscle Atrophy to Insulin Resistance and Diabetes Part 
1 of this two part series). 

 Bjorntorp  [32]  showed a signifi cant relationship between low 
T and insulin resistance (IR). In recent studies, Pitteloud et al. 
 [33]  and Yialamas et al.  [34]  showed that acute sex steroid with-
drawal reduces insulin sensitivity in young healthy men with 
idiopathic hypogonadotropic hypogonadism. They noted that 
the acuity of TD, in the absence of changes in body mass index 
or leptin levels, suggests that sex steroids modulate insulin sen-
sitivity in the absence of changes in body composition. TD in the 
long term leads to IR, metabolic fat deposits, and T2DM  [35] . 
As discussed in Part 1 of this two-part series, an extreme form 
of TD is seen in surgically or chemically castrated men with 
advanced PCa who experience an immediate onset of fatigue, 
muscle strength loss, and erectile dysfunction. These symptoms 
may be part of the spectrum of cellular changes due to a com-
mon denominator that is  “ mitochondrial dysfunction. ”  

 Here, we advance the hypothesis that in TD,  “ the common 
denominator between the development of IR in the long term 
and the immediate experience of fatigue may lie in the rela-
tionship between T and peak oxygen utilization (VO 2  max) 
and mitochondrial oxidative phosphorylation effi ciency and 
gene expression of proteins and enzymes involved in this 
critical metabolic pathway. ”  

 Pitteloud et al.  [33]  showed that T levels correlate inversely 
with IR and positively with VO 2  max and  OXPHOS-CR  
gene expression. Medical castration of healthy normal men 
decreases lipid oxidation and resting energy expenditures 
 [36] . Androgens modulate mitochondrial functions, and 
reduced androgen levels contribute to ineffi ciency of energy 
utilization  [37] . Thus, it is reasonable to propose that mito-
chondrial function controls our sense of energy and vitality, 
and the  “ pick-up-and-go ”  mentality, as well as possibly infl u-
ences the pathogenesis of IR, T2DM, and CVD. 

 In subjects with IR, evidence exists for reduced expression 
of peroxisome proliferator-activated receptor  γ  (PPAR γ ) co-
activator 1- α  (PGC-1 α ) and down-regulation of the  OXPHOS  
genes in skeletal muscle mitochondria  [38, 39] . Morino et al. 
 [40, 41]  showed declining mitochondrial function in elderly 
men compared with young men. Whether this is related to the 
lower T levels in elderly men remains unknown. Elderly men 
exhibit a 40 %  decline in mitochondrial oxidative phosphoryla-
tion capacity, which may contribute to the development of IR. 

 The proposed link between mitochondrial dysfunction and 
increased IR, T2DM, increased body fat, decreased lean mus-
cle mass, low energy levels, ineffi cient metabolism, increased 
low-grade infl ammation, metabolic syndrome (MetS), and 
increased obesity may contribute to accelerated aging, 
CVD  and even premature death. Although the proposed link 
between mitochondrial dysfunction and various pathological 
processes are evident as mitochondria are abundant in meta-
bolically active tissues and cells, including the brain, skel-
etal muscle, heart, liver, and kidney, there are limited studies 
investigating androgen regulation of mitochondrial function. 

 Mitochondria are the sites of energy production from vari-
ous fuel sources, such as carbohydrates, lipids, and proteins. 
A highly regulated set of complex biochemical pathways 
are involved in fuel oxidation to transform stored fuels into 
chemical energy in the form of ATP. During the process of 
energy production, reactive oxygen species (ROS) are also 
produced, and if not neutralized properly, these ROS will 
result in damage of mitochondrial DNA, proteins, and lipids. 
Mitochondrial dysfunction subsequent to mitochondrial DNA 
damage forms a vicious cycle whereby reductions in func-
tional mitochondrial proteins leads to an increased accumula-
tion of ROS and free radicals, which in turn causes further 
mitochondrial DNA damage. 

 Mitochondria are not only enclosed within their own 
membranes, but also possess their own DNA. The outermost 
compartment of mitochondria is its relatively permeable 
outer membrane. The outer membrane of the mitochondrion 
contains enzymes involved in the transport of lipids into the 
innermost compartment, the matrix, where they are used in the 
production of energy. The matrix is enclosed within the highly 
convoluted inner mitochondrial membrane. The series of folds 
and tubules that make up the inner mitochondrial membrane 
are known as cristae, and harbor the enzymes involved in ATP 
production. As such, it seems obvious that highly active cells 
possess a more complex inner mitochondrial membrane. ATP 
production occurs within the matrix where enzymes, such as 
ATP synthase are found. Some of these important enzymes are 
encoded by mitochondrial DNA, also found in the matrix. 

 Altered mitochondrial morphology has been associated with 
membrane potential heterogeneity  [42, 43]  and increased oxi-
dative stress, whereby decreased membrane potential leads to 
increases in ROS production. Changes in mitochondrial mor-
phology promote the opening of the mitochondrial permeability 
transition pores, a critical step that leads to reduced mitochon-
drial membrane potential accompanied by increased release 
of cytochrome  c  and ultimately committing cells to apoptosis. 
Studies have implicated mitochondrial fragmentation as the 
precursor to mitochondrial permeability transition, which is rec-
ognized as the  “ point of no return ”  for almost all signal transduc-
tion cascades leading to apoptosis. Therefore, we hypothesize 
that in cardiomyocytes, TD may increase oxidative stress and 
apoptosis leading to mitochondrial dysfunction  [33, 44] . 

 The question remains whether androgens regulate the num-
ber of mitochondria, as well as the expression of proteins and 
enzymes, which are involved in energy production. If this 
were the case, then this suggests that androgen defi ciency 
contributes to mitochondrial dysfunction and disruption of 
normal cellular function, including production of ATP and 
promoting cell death. In the following sections, we discuss 
the relationship between TD and mitochondrial function and 
its implication in IR, T2DM, and CVD.  

  Effects of androgens on mitochondrial biogenesis/

morphology 

 Considerable information is available regarding the effect of 
T on mitochondrial biogenesis and morphology (see Table 
 1   and Figures 1 and 2). In a recent study, T up-regulated 
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serine-threonine kinase (Akt) phosphorylation and mito-
chondrial transcription factor A (Tfam) expression, exerting 
an anti-apoptotic effect against doxorubicin (Dox)-induced 
cardiotoxicity in cardiac myoblast cells  [46] . Low levels 
of T are associated with reduced expression of PGC-1 α  in 
muscle  [33] . Furthermore, androgen receptor (AR)-defi cient 
mice express low levels of PGC-1 α   [47] . Electron micro-
scopic examination revealed prominent vacuole formation of 
myocardial mitochondria in Dox-treated male AR knockout 
(ARKO) mice. In addition, cardiac oxidative stress and apop-
tosis of cardiomyocytes were more prominently increased by 
Dox treatment in male ARKO mice than in male wild-type 
(WT) mice  [46] . 

 The expression of a key mitochondrial transcriptional 
factor (Tfam) in cardiac tissues of male WT mice was not 
affected signifi cantly by Dox treatment, while its expres-
sion was reduced signifi cantly by almost half in male ARKO 
mice treated with Dox, suggesting an important role for the 
AR in modulating mitochondrial function  [46] . Orchiectomy 
induced a severe decrease in levator ani muscle weight associ-
ated with increased apoptosis and accompanied by condensed 
mitochondria  [66] . Reduced T induced anti-apoptotic protein 
expression, including Bcl-2 and survivin, in the androgen-
sensitive human prostate adenocarcinoma cell line LNCaP in 
which depolarization of mitochondrial membrane potential 
was reported  [67] . 

 Evidence of high-grade swelling of mitochondria with loss 
of matrix density, disturbances of mitochondrial cristae, and 
disruption of mitochondrial membranes has been demonstrated 
in rat embryos exposed to maternal diabetes in vivo or to high 
concentrations of glucose, pyruvate,  β -hydroxybutyrate, or 
 α -ketoisocaproate in vitro  [68] . Maternal diabetes caused 
swelling of the mitochondria in the embryonic neuroepithe-
lium. The swollen mitochondria were characterized by mark-
edly increased size, pale matrix, short distended cristae, and 
occasional disruptions of their membranes  [68] . We have also 
demonstrated mitochondrial swelling in trabecular smooth 
muscle of penile tissue from castrated male animals  [69]  
(Figure  3 ). It has been hypothesized that mitochondrial swell-
ing is the result of peroxidation of the mitochondrial membrane 
lipids, which occurs through a free-radical chain reaction and 
can be inhibited by antioxidants that block this reaction  [70] .  

  Effects of androgens on mitochondrial enzyme 

expression and activities 

 It has been shown that the anabolic response of the mouse 
gastrocnemius and soleus muscles to T is accompanied by a 
notable increase in the activity of mitochondrial cytochrome 
 c  oxidase as well as four lysosomal hydrolases  [9] . T admin-
istration potentiates the exercise-induced increments in cyto-
chrome  c  oxidase activity in the heart and soleus muscles, and 
has been shown to slightly increase cytochrome  c  oxidase 
activity in the fast-twitch extensor digitorum longus muscles 
of sedentary and exercised rats  [48] . Previous fi ndings reported 
higher (23 % ) cytochrome  c  oxidase activities in the glycolytic 
fragment of the gastrocnemius muscle and an  ∼ 17 %  increase in 
the soleus of sedentary male compared with sedentary female 

mice. Orchiectomy abolished this sex difference, which was 
restored following T administration  [71, 72] . 

 T administration stimulates pyruvate dehydrogenase 
(PDH) activity and citrate production from pyruvate in the 
presence of oxaloacetate in castrated rats (Figure  1  )  [49] . The 
administration of androgens to castrated rats caused increased 
specifi c activity of a number of mitochondrial enzymes in the 
epididymis, including succinate dehydrogenase (SDH), gly-
cerol phosphate dehydrogenase, and pyruvate carboxylase  [42, 
45] . T propionate induced a substantial increase in specifi c 
activity of the inner-mitochondrial-membrane enzyme cyto-
chrome  c  oxidase in both red and white skeletal muscle as 
well as mouse kidney, heart, and aorta, without affecting the 
outer-mitochondrial-membrane enzyme monoamine oxidase 
 [9] . T also increases both oxaloacetate and acetyl-CoA pro-
duction, which results in increased citrate synthesis, in an as 
yet to be determined mechanism that enhances PDH activity 
 [49] . In prostate-derived cell lines, transcriptional regulation of 
DNA-encoded mitochondrial enzyme aconitase, which inter-
converts citrate and isocitrate in the citric acid cycle, is mediated 
by the AR  [50] . In skeletal muscle, it has been demonstrated 
that T levels correlated positively with both VO 2  max and 
 UQCRB  expression, a key enzyme in the oxidative phospho-
rylation pathway, suggesting that an association exists between 
serum T levels and mitochondrial function  [33] .  

  Effects of androgens on oxidative metabolism 

 A recent study reported that androgens stimulate the utilization 
of glucose to undergo a metabolic conversion for production 
of ATP as well as lipogenesis in androgen-dependent PCa cells 
 [51] . In a study investigating the effect of   T treatment in patients 
with CHF, T supplementation improved glucose metabolism as 
well as functional capacity and large-muscle strength  [9] . 

 Androgen replacement therapy accelerates the conversion 
of fi ber types from fast to slow oxidation  [52] , and increases 
the number and size of type I slow oxidative fi bers  [53] . These 
fi ndings may explain the clinical observation of reduced mus-
cle fatigability in response to T replacement, and the noted 
improved capacity of skeletal muscles may be attributed to an 
enhanced aerobic potential  [9] .  

  Effects of androgens on fatty acid metabolism 

 T markedly stimulates hormone-sensitive lipolysis while 
inhibiting lipoprotein lipase (LPL) activity  [75, 76] . This 
effect may enhance fatty acid release in tissues, causing an 
increase in plasma free fatty acid content and interfering with 
normal glucose utilization in muscles  [77] . An increased 
fl ux of fatty acids may decrease muscle glycogen synthase 
activity  [78]  and increase muscle triglyceride stores  [79] . T 
increases levels of fatty acid-binding protein (FABP)  [48] . 
FABP plays an important role in the delivery of fatty acids 
to mitochondria for oxidation  [80] . While the effect of T on 
FABP expression depends on the muscle type, it is clear that 
T treatment produces a positive infl uence on FABP avail-
ability  [77] . T treatment in sedentary and exercised mice 
increased FABP content in cardiac muscle  [48] . 
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 Table 1      Studies relating role of androgens in mitochondrial biogenesis, structural integrity, and biochemical function.  

Function Study Observations Comments

Mitochondrial 
biogenesis/
morphology

Ikeda et al., 
2010  [46] 

T counteracts Dox-induced cardiotoxicity partly through 
activation of the Akt pathway and up-regulation of Tfam 
to protect cardiomyocytes from mitochondrial damage and 
apoptosis

T up-regulates Akt 
phosphorylation and Tfam 
expression

Pitteloud et al., 
2005  [33] 

Low serum T levels appear to be associated with an 
adverse metabolic profi le and impaired mitochondrial 
function promoting IR

Low levels of T are associated 
with decreased expression of 
PGC-1 α 

Fan et al., 2005 
 [47] 

AR plays an important role in metabolism affecting energy 
balance, and loss of AR has a negative impact on adiposity 
and insulin sensitivity

AR-defi cient mice express 
low levels of PGC-1 α 

Caminiti et al., 
2009  [9] 

T replacement therapy improves exercise capacity, muscle 
strength, and glucose metabolism in men with moderately 
severe CHF, and these effects are thought to be mediated 
by metabolic and peripheral effects

T causes an increase in 
muscle mitochondrial 
cytochrome  c  oxidase activity

Mitochondrial 
enzyme expression 
and activity

van Breda et al., 
1992  [48] 

FABP contents and mitochondrial activities of heart and 
skeletal muscle are affected by training and T, and these 
effects are different for heart and skeletal muscles

T potentiates training-induced 
increase in cytochrome  c  
oxidase activity

Koenig et al., 
1980  [44] 

Androgens regulate mitochondrial cytochrome  c  oxidase 
and lysosomal hydrolases in mouse skeletal muscle

Orchiectomy abolishes sex 
difference in cytochrome  c  
oxidase activity

Costello and 
Franklin, 1993 
 [49] 

T stimulates PDH activity and citrate production from 
pyruvate in the presence of oxaloacetate (OAA). T 
increases both OAA and acetyl-CoA production, which 
results in increased citrate synthesis

T enhances PDH activity and 
citrate production

Brooks, 1979 
 [42] 

Castration resulted in a decrease in the concentration 
of nearly all enzymes associated with the tricarboxylic 
acid cycle (TCA), and administration of T restored 
concentrations to values similar to those in animals 
maintained by endogenous androgen. The most marked 
change was in that of pyruvate carboxylase (PC)

Androgen increased levels of 
SDH, glycerol 3-phosphate 
dehydrogenase (GPDH), and 
PC in castrated rats

Juang et al., 
2004  [50] 

Dihydrotestosterone regulates mitochondrial aconitase 
gene expression

Transcriptional regulation of 
aconitase is mediated by AR

Moon et al., 
2011  [51] 

Androgens increase glucose utilization for de novo 
lipogenesis in LNCaP cells through the activation of 
hexokinase 2 and activation of the cardiac isoform of 
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase

Androgens stimulate glucose 
utilization, ATP production, 
and lipogenesis

Oxidative 
metabolism

Czesla et al., 
1997  [52] 

Administration of androgens prevents severe muscle 
atrophy, and improves and accelerates fast to slow fi ber 
type conversion necessary for successful cardiomyoplasty

Androgen replacement 
therapy (ART) accelerates 
conversion of fi ber types from 
fast to slow oxidative

Ustunel et al., 
2003  [53] 

T induces protein synthesis in gastrocnemius muscle fi bers, 
and induces changes in shape and size, and also can change 
the appearance and the number of fi bers

ART increases number and 
size of type I slow oxidative 
fi bers

Bjorntorp, 1991 
 [32] 

Administration of T in moderate doses to middle-aged men 
leads to adaptations of the metabolism of adipose tissue 
expected to be followed by a diminution of this mass

T stimulates hormone-
sensitive lipolysis

Fatty acid 
metabolism

Lanfranco et al., 
2004  [54] 

Hypogonadal men show higher adiponectin levels, which 
are reduced by T replacement therapy, suggesting that T 
exerts a regulatory role on adiponectin secretion in humans

T therapy can decrease 
adiponectin in hypogonadal 
men

Basaria et al., 
2006  [55] 

Men with PCa receiving ADT are at risk for developing IR 
and hyperglycemia, thus leading to their increased risk of 
CVD

ADT contributes to 
development of MetS in men

MetS Mauvais-Jarvis, 
2011  [56] 

An inverse relationship exists between total serum T and 
visceral adipose tissue in males with MetS

Estrogen and androgen 
receptors are potential targets 
in the prevention of age-
related metabolic disorders

Khaw and 
Barrett-Connor, 
1992  [57] 

T mobilizes the abdominal depot in males Androgen plays a role in fat 
metabolism and adiposity
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Function Study Observations Comments

Pitteloud et al., 
2005  [33] 

Low serum T levels are associated with an adverse 
metabolic profi le and suggest a novel unifying mechanism 
for the previously independent observations that low T 
levels and impaired mitochondrial function promote IR in 
men

In males, high levels of T are 
associated with improved 
insulin sensitivity

Lichtenstein et 
al., 1987  [58] 

Insulin and T may have an interdependent regulatory 
effect on lipid metabolism and the effect of T on ischemic 
heart disease appears to be primarily mediated through its 
association with insulin

An inverse relationship exists 
between levels of T and 
fasting insulin levels in males 
independent of age, obesity, 
or body fat distribution

IR Pasquali et al., 
1991  [59] 

Androgens play an important role in sugar and fat 
metabolism, and reduced T levels in diabetic men may 
contribute to the vicious cycle of altered glucose and lipid 
metabolism

Males with T2DM have 
lower levels of T than 
weight-matched non-diabetic 
controls

Simon et al., 
1992  [60] 

Total plasma T decreased with each decade of age, and 
insulin increased with each decade of age. In these cross-
sectional data, this signifi cant graded inverse association 
between T and insulin was independent of age

A potential inverse 
relationship between T and 
IR may exist in diabetic men

Andersson et 
al., 1994  [61] 

T and sex hormone-binding globulin (SHBG) were lower 
in the diabetic men than in control groups

Men with T2DM have low 
levels of SHBG and low T 
values

Barrett-Connor, 
1992  [62] 

Men with diabetes have signifi cantly lower plasma levels 
of free and total T, and lower levels of endogenous T in 
diabetic men are associated with diabetic dyslipidemia

There is a positive 
relationship between total T 
levels and insulin sensitivity 
in normal males

Wang et al., 
2011  [63] 

The presence of low T and/or SHBG predicts the 
development of MetS and T2DM

Men with obesity, MetS, and 
T2DM have low total and free 
T and low SHBG

Haffner et al., 
1994  [20] 

Total whole-body glucose disposal is negatively associated 
with waist-to-hip ratio and positively associated with total 
T and SHBG

Higher waist-to-hip ratio 
and lower T are strongly 
associated with a decrease 
in total and non-oxidative 
whole-body glucose disposal 
in men

Birkeland et al., 
1993  [64] 

There is a positive relationship between total T levels and 
insulin sensitivity in diabetic males

IR is associated with 
decreased levels of SHBG 
levels in men with T2DM

Heufelder et al., 
2009  [65] 

T treatment of hypogonadal diabetic males markedly 
improves insulin sensitivity

T coupled with lifestyle 
modifi cations improves 
insulin sensitivity and reduces 
hemoglobin A1C (HbA1C) in 
diabetic men

Akt, serine-threonine kinase; IR, insulin resistance; PGC-1α, coactivator 1-alpha; AR,androgen receptor; CHF, congestive heart failure; FABP, 
fatty acid-binding protein; PDH, pyruvate dehydrogenase; SDH, succinate dehydrogenase; PCa, prostate cancer; ADT, androgen deprivation 
therapy; CVD, cardiovascular disease; MetS, metabolic syndrome; T2DM, type 2 diabetes.

(Table 1 continued)

 It has been reported that the high levels of adiponectin 
observed in men with TD can be reduced by T therapy  [54] . T 
infusion decreases adiponectin levels in mice  [81] , most likely 
by an AR-mediated mechanism  [47] . It remains unclear whether 
AR-mediated suppression of adiponectin refl ects increased adi-
ponectin sensitivity or a decreased number of adipocytes  [56] . 
ADT contributes to the development of MetS in men  [55, 56] . 
An inverse relationship exists between total serum T and the 
visceral adipose tissue in men with MetS  [57] . This relationship 
was observed in age-related TD  [14] , inherited TD  [82] , and 
ADT during treatment  [55] . It seems to follow that in men, high 
T levels are associated with improved insulin sensitivity  [33] .  

  TD, mitochondrial dysfunction, and IR 

 Wang et al.  [63, 74]  recently reviewed the relationship 
between TD and T2DM. Cross-sectional studies have demon-
strated an inverse relationship between T concentrations and 
fasting insulin levels in men independent of age, obesity, and 
body fat distribution  [58 – 60, 83, 84] . The well-recognized 
observation that men with T2DM have lower T levels than 
weight-matched non-diabetic control subjects suggests a link 
between T and T2DM  [61, 62, 74] . Moreover, several large 
prospective studies have demonstrated that low T levels are 
predictive of T2DM development in men  [19 – 25] . In addition, 
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two studies have shown a positive relationship between total 
levels of T and insulin sensitivity in normal  [20, 21]  as well 
as diabetic men  [64] . Although the data with total T is well 
established, the relationship with free T is controversial. For 
instance, data on the relationship between free T levels and 
insulin sensitivity in some studies show a weakly positive 
relationship  [20, 21]  and other studies report no correlation 
 [64, 85] . However, T treatment of men with T2DM and TD 
resulted in marked improvement of insulin sensitivity  [65] . 

 Morino et al.  [40, 41]  reported a 38 %  reduction in the number 
of mitochondrial density in patients with IR. This observation 
was consistent with previous studies reporting lower mitochon-
drial number in patients with T2DM  [86] . Another study showed 
other morphological changes, such as impaired subsarcolem-
mal fraction in obese patients and patients with T2DM  [87] . In 
agreement with these observations, it has been shown that the 
expression of cytochrome  c  oxidase I, SDH, and PDH is mark-
edly reduced in subjects with IR  [40, 41] . This reduction in skel-
etal muscle mitochondrial number may be responsible for the 

diminished rates of mitochondrial oxidative phosphorylation, 
which predisposes to intramyocellular lipid accumulation  [41] . 

 Mitochondrial dysfunction has commonly been observed 
in muscles of patients with T2DM  [86] . Several clinical stud-
ies in the past decade have reported that mitochondrial dys-
function, including the reduction in mitochondrial density 
and OXPHOS effi ciency, is associated with T2DM  [74] . IR 
in T2DM is associated with reduced oxidative capacity in 
skeletal muscle  [88, 89]  as well as diminished expression of 
a set of nuclear genes involved in oxidative metabolism  [38, 
39, 90, 91] . A signifi cant reduction in the total activity of the 
mitochondrial electron transport chain has been observed in 
the skeletal muscle of T2DM patients compared with that 
of lean and healthy controls  [86] . Furthermore, the specifi c 
activities of NADH-oxidase/cardiolipin, NADH-oxidase/cit-
rate, and NADH-oxidase/  β -hydroxyacetylcoAdehydrogenase 
( β -HAD) ratios are reduced by two- to three-fold in patients 
with T2DM  [92] . The frequency of common and large-scale 
deletion in mitochondrial DNA was found to be higher in 
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 Figure 1    Effects of androgens on mitochondrial function. 
 T increases PGC-1 α  expression  [33, 46, 47, 56] , which in turn increases Tfam expression  [46]  as well as mitochondrial biogenesis  [46] . The 
increase in mitochondrial biogenesis increases levels of NRF-1  [46] , which in turn increases oxidative phosphorylation  [7, 33] . T increases 
Tfam expression as well as Akt phosphorylation  [46] , both of which decrease apoptosis leading to an increase in oxidative phosphorylation. T 
stimulates lipolysis and down-regulates lipoprotein lipase (LPL) activity  [36, 37]  and increases expression of FABP  [48]  leading to an increase 
in fatty acid oxidation and in oxidative phosphorylation  [33, 46, 48] . T increases expression of PDH  [49] , which increases production of OAA 
and acetyl-CoA  [49]  leading to a stimulation of the TCA. T also increases expression of SDH and aconitase  [50] , also up-regulating TCA and 
increasing oxidative phosphorylation  [33, 46, 48, 50] . Finally, T increases the expression of cytochrome  c  oxidase  [9, 48, 73] , which leads 
to an increase in oxidative phosphorylation. The increase in oxidative phosphorylation leads to a decrease in ROS and an increase in insulin 
sensitivity  [74] .    
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skeletal muscle of diabetic patients than in age- and sex-
matched controls  [93] . The impairment of oxidative phospho-
rylation as well as fatty acid metabolism has been observed in 
skeletal muscles of insulin-resistant offspring of patients with 
T2DM compared with age-matched insulin-sensitive controls 
 [94] . Mogensen et al.  [95]  reported that ADP-stimulated res-
piration was diminished in obese subjects with T2DM with a 
compensatory increase in type 2 muscle fi bers. Mouse mod-
els have been used to confi rm that mitochondrial dysfunc-
tion can cause T2DM  [74] . Other studies reported a decline 
in mitochondrial number and content of mitochondrial DNA 
and respiratory enzymes. Derangement of the mitochondrial 
network was also noted. These fi ndings are consistent with 
the decline in oxidative phosphorylation and  β -oxidation in 
adipose tissue of mice with T2DM  [96] .  

  Oxidative stress and mitochondrial dysfunction 

 Mitochondrial dysfunction contributes to overproduction of 
ROS and dysregulation of the insulin signaling pathway lead-
ing to IR in muscle  [74] . Overproduction of ROS caused by 
an imbalance of antioxidant enzymes and defective oxida-
tive phosphorylation may damage intracellular components 
and impair normal cellular function  [97] . Oxidative stress 
may activate multiple serine threonine kinase (Akt) cascades, 
including p38 mitogen activated protein kinase and Jun 
N-terminal kinase (JNK), and can act on a number of poten-
tial targets in the insulin signaling pathway, such as insulin 
receptor and the family of insulin receptor substrate (IRS) 
proteins  [74] . Furthermore, inactivation of phosphoinositol-
3-kinase has been shown to impair the translocation of the 
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 Figure 2    Modulation of mitochondrial function by androgens. 
 T and 5- α -dihydrotestosterone (5α-DHT) bind with high affi nity to the AR. The ligand-AR complex modulates the expression of several 
nuclear and mitochondrial target genes that, together, promote fatty acid oxidation, oxidative phosphorylation, and mitochondrial biogenesis, 
attenuating the generation or build up of ROS resulting in an improvement in insulin sensitivity  [33] . In the mitochondrion, the bound AR also 
up-regulates the expression of cytochrome  c  oxidase  [9] . In the nucleus, the ligand-bound AR complex increases PGC-1 α  expression  [46] , 
which in turn up-regulates Tfam expression  [46] . These pathways lead to mitochondrial biogenesis, which increases NRF-1 levels  [46] , the 
later in turn facilitates oxidative phosphorylation and increased expression of oxidative phosphorylation genes encoding PDH, SDH, GPDH, 
and PC  [42, 49] .    
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insulin-dependent glucose transporter GLUT4 to the plasma 
membrane, leading to a decreased glucose uptake by muscle 
in response to insulin  [97] . 

 With advancing age, muscles exhibit lower mitochon-
drial number and lower effi cacy of energy production  [98] . 
It has been suggested that the lower effi ciency in muscle 
mitochondria in the elderly is caused by ROS damage to the 
inner mitochondrial membrane, resulting in uncoupling of the 
electron transport chain  [99] . The decreased effi ciency and 
impaired energy production capacity of muscle mitochondria 
that develops with aging may be partially reversed  [100, 101] . 
This suggests that mitochondrial dysfunction is not entirely 
due to irreversible mutations in mitochondrial DNA. Physical 
activity may stimulate mitochondrial biogenesis as well as 
improve the effi ciency of existing mitochondria, possibly by 
reversing oxidative damage  [98] . 

 Impairment of mitochondrial function may be accom-
panied by a diminished activity of enzymes involved in 
 β -oxidation of fatty acids, leading to an increase in intra-
cellular lipid content  [74] . Hotta et al.  [102]  reported that 
the plasma level of adiponectin, the adipokine released by 
adipose tissue, is diminished in obese patients or patients 
with T2DM. In mouse models, it has been established that 
adiponectin defi ciency leads to IR  [103] . This decrease in 
adiponectin expression in adipocytes with mitochondrial 
dysfunction occurs by activation of the JNK pathway  [104] . 
Thus, mitochondrial dysfunction not only causes insulin 
insensitivity but also impairs the secretion of adipokines, by 
adipocytes, which in turn compromises other tissues with 
regard to glucose utilization  [74] . 

 Mootha et al.  [38]  reported decreased maximal aerobic 
capacity and reduced expression of mitochondrial genes 
involved in oxidative phosphorylation in men with impaired 
glucose tolerance and T2DM. Patti et al.  [39]  demonstrated a 
decreased expression of enzymes involved in oxidative phos-
phorylation in a group of T2DM patients as well as insulin-
resistant fi rst-degree relatives of T2DM subjects with normal 
glucose tolerance. Using magnetic resonance spectroscopy, 
it has been shown that decreased mitochondrial oxidative 
phosphorylation activity is the cause of age-related IR  [105] . 
In addition, the lean offspring of patients with T2DM also 
exhibited mitochondrial dysfunction  [94] . A recent study per-
formed in an animal model bred to exhibit low aerobic capac-
ity also implicated a causative role of impaired mitochondrial 
function in the development of the CVD risk profi le associ-
ated with MetS  [106] .  

  Molecular mechanism of androgen action in 

mitochondrial function 

 Androgens regulate gene transcription through a genomic 
pathway in which the AR, a ligand-activated transcription 
factor, binds the hormone and translocates into the nucleus 
where it interacts with specifi c DNA sequence known as 
androgen response element (ARE) in its target genes  [107] . 
Evidence accumulating over the past two decades has also 
implicated rapid  ( non-genomic )  responses to androgens, 
through a mechanism dependent or independent of AR 

action  [108] . While limited information is available regard-
ing the interaction of AR with mitochondria, it has been con-
fi rmed that the AR interacts directly with the Vb subunit of 
cytochrome  c  oxidase  [73] . In prostatic cells, the AR medi-
ates the translocation of the pro-apoptotic factor Bax to the 
mitochondria in a transcriptionally dependent mechanism 
that is yet to be elucidated  [109] . In contrast, direct receptor-
independent activation of inner mitochondrial membrane 
ATP-sensitive K  +   channels has been observed following T 
administration in cardiomyocytes  [110] . 

 Several biochemical factors play an integral role in mito-
chondrial biogenesis. These include the PPAR γ  co-activator 
PGC-1 α , a transcriptional factor co-activator  [41] , 5 ′  adeno-
sine monophosphate-activated protein (AMP) kinase, which 
elicits its effects through myocyte enhancer factor-2 and 
cyclic AMP response element-binding protein-mediated 
increased PGC-1 α  expression  [111 – 113] . Thus, increased 
expression of PGC-1 α  leads to an increase in target genes, 
such as the nuclear respiratory factor-1 ( NRF-1 ), a transcrip-
tion factor that stimulates many nuclear-encoded mitochon-
drial genes including  OXPHOS  genes and  Tfam , which bind 
to the D-loop of the mitochondrial genome and increase tran-
scription of mitochondrial genes and replication of mitochon-
drial DNA  [114] . 

 It has been suggested that the mechanism of IR induced 
by TD involves a down-regulation of the transcription factor 
PGC-1 α  in skeletal muscle  [56] . As a stimulator of mitochon-
drial biogenesis as well as skeletal muscle oxidative fi bers, 
PGC-1 α  is a molecular marker of insulin sensitivity, and a 
decrease in its expression has been observed in patients with 
T2DM  [38] . Low T levels are associated with low PGC-1 α  
expression in muscle  [33] . This is supported by studies in 
mouse models in which similar association has been observed 
between TD and low levels of PGC-1 α  in tissues  [47] . The 
reduced expression of PGC-1 α  compromises mitochondrial 
activity and energy production. Thus, it seems likely that 
TD promotes IR, at least partially, through an AR-dependent 
mechanism that involves a decrease in PGC-1 α -mediated 
oxidative and insulin-sensitive muscle fi bers  [56] . 

 T substitution in orchiectomized rats improved recovery of 
myocardial function after ischemia. While this effect might 
have been partly related to acute coronary vasodilation by T, 
the investigators of one study hypothesized that T may also 
exhibit direct cytoprotective actions on the myocardium. The 
results showed that T acutely and directly depolarized and oxi-
dized cardiac mitochondria in a K  +  -dependent, ATP-sensitive, 
and AR-independent manner (non-genomic pathway). By 
patch clamping the cardiac inner mitochondrial membrane, it 
was demonstrated that T induced activation of mitochondrial 
K  +   channels, which were inhibited by ATP, 5-hydroxydecai-
noic acid, and glibenclamide, but exhibited no effect on sar-
coplasmic K ATP  channels. T protected cardiomyocytes from 
ischemic cell death  [110] . 

 A recent study set out to clarify whether the AR system 
exerts a cardioprotective effect against Dox-induced cardio-
toxicity. Electron microscopic examination of mitochondria 
in the hearts of animals treated with Dox revealed prominent 
mitochondrial damage, such as vacuolization in the ARKO 
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mice model compared with that of the WT mice. A basal mito-
chondrial dysfunction was noted in the myocardium of male 
ARKO mouse heart, in the absence of Dox treatment. This 
was attributed to loss of AR-mediated signaling, which may 
play a critical role in cardiac oxidative stress. Furthermore, 
superoxide production in response to Dox treatment of male 
ARKO mice was markedly enhanced compared with that of 
male WT mice, but the number of apoptotic cells in the ven-
tricular tissues was signifi cantly larger in male ARKO mice 
than in male WT mice. The expression of a key mitochondrial 
transcription factor (Tfam) in cardiac tissues of male WT 
mice was not affected signifi cantly by Dox treatment while its 
expression was reduced by almost half in male ARKO mice 
treated with Dox. The results of this study suggest that the 
AR system may counteract Dox-induced cardiotoxicity partly 
through activation of the Akt pathway and up-regulation of 
Tfam to protect cardiomyocytes from mitochondrial damage 
and apoptosis  [46] . 

 A recent study comparing mitochondrial function of young 
obese and non-obese individuals showed more mitochondrial 
dysfunction in the cardiomyocytes of obese patients with 
excessive oxidative stress, mitochondrial damage, and apop-
tosis. This may be partially explained by the noted reduction 
in the expression of NRF-1 and its target Tfam  [115]  and 
may account for decreased expression of the complex I pro-
tein ND6  [116] . Since MetS and obesity are associated with 
reduced T levels, it is possible that reduced circulating andro-
gens, which contribute to increased infl ammatory cytokines, 
may play a role in mitochondrial dysfunction.  

  Mitochondrial dysfunction and diseases 

 TD is increasingly recognized not only among older men but 
also in young men and in cancer survivors, who underwent 
ADT. However, the impact of TD on the quality of life remains 
poorly established. Among the common complaints of TD is 
fatigue, reduced energy, loss of self-esteem, and sexual dys-
function  [30] . T replacement therapy in men with TD showed 
improvement in mood, sexual function, reduced depres-
sion and anxiety, increased concentration, self-confi dence, 
improved mood, and decreased fatigue within a few weeks 
 [17] . The mechanisms by which androgens affect many of 
these physiological processes are not clearly understood. One 
underlying hypothesis is that androgens modulate mitochon-
drial function and this may be a common link between TD 
and the various symptoms noted in men with TD. However, 
no specifi c mechanism has been provided to relate androgen 
defi ciency to mitochondrial dysfunction. 

 Mitochondria play a critical role in cellular function by 
regulating biochemical pathways involved in lipid, protein, 
and carbohydrate metabolism as well as cell survival and 
apoptosis. Understanding androgen modulation of mito-
chondrial function is critical to understanding the role of 
TD in the pathophysiology of T2DM, IR, and CVD. As 
shown in Figure  1 , androgen regulation of expression and 
activity of oxidative phosphorylation enzymes in the mito-
chondria may represent one critical mechanism, among 
others, in smooth and skeletal muscle in the control of 

cellular processes. This regulation by androgens facilitates 
the increase in production of cellular energy depending 
on the physiological conditions, such as physical demand, 
stress, or acute illness. 

 As depicted in Figure  2  , androgens regulate cellular 
metabolism and energy production through molecular and 
cellular mechanisms involving both genomic and non-ge-
nomic pathways and mitochondrial  OXPHOS  genes. Binding 
of activated AR complexes with nuclear and mitochondrial 
 OXPHOS  gene response elements has been demonstrated 
 [117 – 119] . Another proposed pathway of androgen action 
is through direct interaction of AR complexes with AREs of 
 OXPHOS  genes in the mitochondria. Additional mechanisms 
may involve indirect interactions with ARE in the nucleus to 
activate transcription of genes encoding transcription factors, 
such as NRF and PGC-1 α , which in turn activate  OXPHOS  
genes in the mitochondria  [120, 121] .  

  Testosterone effect on mitochondrial functions 

 As depicted in Figure  1 , T up-regulates a host of enzymes and 
transcriptional factors. For example, T increases the expres-
sion of PGC-1 α , in which the latter modulates Tfam tran-
scriptional factor activity as well as stimulates mitochondrial 
biogenesis, leading to an increase in the expression of NRF-1. 
T also increases the expression and activity of Akt, hormone-
activated lipases, FABP, cytochrome  c  oxidase, SDH, and 
PDH. These enzymes coordinate a host of integrated path-
ways leading to increased mitochondrial biogenesis and to 
increased energy production. Furthermore, the expression of 
nuclear transcription factors, which in turn control the expres-
sion of nuclear-encoded mitochondrial proteins, is also regu-
lated by androgens. 

 Depletion of mitochondrial DNA by chronic treatment 
with ethidium bromide causes loss of response to insulin due 
to impaired insulin signaling pathways, and repletion of mito-
chondrial DNA restores insulin sensitivity of muscle cells 
 [122] . In addition to this genetic mechanism of action, treat-
ment with respiratory inhibitors has revealed a decrease in 
insulin-stimulated glucose uptake as well as inactivation of 
Akt and IRS-1 of the insulin signaling pathway  [123] . One 
proposed mechanism by which mitochondrial dysfunction 
causes IR involves impairment in insulin secretion by  β -islet 
cells in response to a decreased intracellular Ca 2 +   concentra-
tion. It has been suggested that the ATP/ADP ratio is dimin-
ished in  β -islet cells with mitochondrial defects, rendering the 
cell incapable of inducing closure of ATP-dependent K  +   chan-
nels or depolarization of the membrane  [74] . 

 Mitochondrial dysfunction is implicated in a number of 
pathophysiological processes in disease states, such as diabe-
tes, IR, and CVD. Recent studies have demonstrated a strong 
association between TD, IR, diabetes, and CVD. However, 
the molecular and cellular mechanisms linking TD to these 
pathologies remain under investigation. Yialamas et al.  [34]  
and Pittleoud et al.  [33]  have suggested that TD has a direct 
effect on glucose utilization in cases of increased IR. VO 2  
max and  OXPHOS-CR  gene expression were shown to corre-
late positively with T levels  [33] . In animal studies, castration 
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 Figure 3    Effects of androgen deprivation on mitochondrial 
morphology. 
 Penile corpus cavernosum tissue sections obtained from 2-week 
castrated mature male rabbits (top) or from sham-operated animals 
(bottom) were fi xed, embedded in plastic, and sectioned for electron 
microscopic examinations as described previously  [69] . Note that the 
trabecular smooth muscle cells from castrated animals have disorga-
nized contours and have accumulated vacuoles and fl occulating sub-
stances. Also note that the mitochondria (arrow) were increased in 
number and appear swollen (see magnifi ed box at top right corner). 
In contrast, in the section from the sham-operated animals (bottom), 
the smooth muscle appears normal with no distortions or accumula-
tion of vacuoles, and the mitochondria (arrow) appear normal with 
no increase in the number or swelling (see magnifi ed box in the top 
right corner).    

is also associated with IR and decreased glycogen synthase 
activity  [37] . Investigations in obese rats, a genetic model of 
obesity and T2DM, strongly suggest a role for androgens in 
regulating mitochondrial function  [37] . Interestingly, medical 
castration of young healthy men with gonadotropin-releas-
ing hormone agonist resulted in reduced lipid oxidation and 
diminished resting energy expenditure  [36] . These observa-
tions suggest that TD may contribute to IR by a mechanism 
that involves attenuated or altered fatty acid oxidation. T 
modulation of  OXPHOS  gene expression may represent an 
important therapeutic modality for preventing or treating 
mitochondrial dysfunction in men with TD.   

  Summary 

 Androgens regulate fuel metabolism through mitochondrial 
function and modulate mitochondrial biogenesis, expression 
of mitochondrial enzymes, and oxidative phosphorylation. 
Androgen defi ciency contributes to the pathophysiology of 
fatigue, IR, diabetes, and in turn CVD through the com-
mon link  “ mitochondrial dysfunction. ”  Research on the 
molecular basis of androgen action in the mitochondria 
may provide novel strategies for the development of phar-
macotherapeutic agents for the management of the afore-
mentioned pathologies   .   
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